Modélisation du transfert radiatif dans les nuages: méthodes et codes numériques pour la télédétection et l'estimation du bilan radiatif.

P. Dubuisson

Laboratoire d'Optique Atmosphérique

UMR CNRS 8518 - Université de Lille - Sciences et Technologies

et

Collègues du LOA et du LaMP

Introduction

Télédétection:

Nombreuses missions spatiales pour les vingt prochaines années (Sentinel, post-EPS, etc.).

Nécessité de pouvoir prendre en compte avec précision la qualité radiométrique et la diversité des mesures (haute résolution spectrale, polarisation, synergie spectrale, etc.).

Impact du rayonnement dans les modèles:

Nécessité de bien représenter les échanges radiatifs dans les modèles, en particulier pour les nuages (LES, GCM).

Objectif de cette présentation:

Présenter les méthodes et codes actuels, avec leurs limites, de l'UV à l'infrarouge thermique.

Introduction

Entrées:

Profil thermodynamique

Gaz

Nuages

Aérosols

Irradiance solaire

Surfaces

Géométrie ...

Théories

Bases de données

Mesures, radiosondages

Paramétrisations

Données climatiques

Sorties des modèles

Codes de transfert radiatif

Equation du transfert radiatif:

Processus Physiques Méthodes mathématiques Résolution numérique

Sorties:

Luminance

Flux radiatif

Température de brillance

Transmission

Méthodes numériques de résolution:

Monte Carlo (3D)

Ordonnées Discrètes

Ordres Successifs de Diffusion

Adding-Doubling

Méthodes à 2-Flux

Réseaux de neurones ...

Calcul des forçages radiatifs

Echauffement et refroidissement radiatifs

Estimation du bilan radiatif

Grandeurs radiatives calculées: Luminance (W.m⁻².sr), flux radiatif (W.m⁻²), température de brillance (K)

Température de brillance : température d'équilibre équivalente si elle était un corps noir émettant le même rayonnement vers l'espace.

$$\mu \frac{dL}{d\tau}(\tau,\mu,\phi) = L(\tau,\mu,\phi) - \frac{\varpi_o}{4\pi} \int_0^{2\pi} d\phi' \int_{-1}^1 d\mu' p(\mu',\phi',\mu,\phi) L(\tau,\mu',\phi')$$
$$- \left[1 - \varpi_o\right] B^{BB}(T) - \frac{\varpi_o}{4\pi} p(\mu_0,\phi_0,\mu,\phi) C^s e^{\left(-\frac{\tau}{\mu_0}\right)}.$$

$$F^{\uparrow} = \int_{2\pi} L^{\uparrow}(\theta, \phi) \vec{u}.\vec{n}.d\Omega$$

Luminance L, en W.m-2.sr

Flux radiatif F, en W.m-2

Forçages radiatifs

$$\mu \frac{dL}{d\tau}(\tau,\mu,\phi) = L(\tau,\mu,\phi) - \frac{\varpi_o}{4\pi} \int_0^{2\pi} d\phi' \int_{-1}^1 d\mu' p(\mu',\phi',\mu,\phi) L(\tau,\mu',\phi')$$
$$- \left[1 - \varpi_o\right] B^{BB}(T) - \frac{\varpi_o}{4\pi} p(\mu_0,\phi_0,\mu,\phi) C^s e^{\left(-\frac{\tau}{\mu_0}\right)}.$$

$$F^{\uparrow} = \int_{2\pi} L^{\uparrow}(\theta, \phi) \vec{u}.\vec{n}.d\Omega$$

Luminance L_v en $W.m^{-2}.sr$

Flux radiatif F, en W.m-2

Forçages radiatifs

DIFFUSION

$$\mu \frac{dL}{d\tau}(\tau,\mu,\phi) = L(\tau,\mu,\phi) - \frac{\overline{\varpi_o}}{4\pi} \int_0^{2\pi} d\phi' \int_{-1}^1 d\mu' p(\mu',\phi',\mu,\phi) L(\tau,\mu',\phi')$$
$$- \left[1 - \overline{\varpi_o}\right] B^{BB}(T) - \frac{\overline{\varpi_o}}{4\pi} p(\mu_0,\phi_0,\mu,\phi) C^s e^{\left(-\frac{\tau}{\mu_0}\right)}.$$

$$F^{\uparrow} = \int_{2\pi} L^{\uparrow}(\theta, \phi) \vec{u}.\vec{n}.d\Omega$$

Luminance L, en W.m⁻².sr

Flux radiatif F, en W.m⁻²

Forçages radiatifs

DIFFUSION

$$\mu \frac{dL}{d\tau}(\tau,\mu,\phi) = L(\tau,\mu,\phi) - \frac{\varpi_o}{4\pi} \int_0^{2\pi} d\phi' \int_{-1}^1 d\mu' \, p(\mu',\phi',\mu,\phi) L(\tau,\mu',\phi')$$

$$- \left[1 - \varpi_o\right] B^{BB}(T) - \frac{\varpi_o}{4\pi} \, p(\mu_0,\phi_0,\mu,\phi) C^s e^{\left(-\frac{\tau}{\mu_0}\right)}.$$
ABSORPTION / EMISSION

$$F^{\uparrow} = \int_{2\pi} L^{\uparrow}(\theta, \phi) \vec{u}.\vec{n}.d\Omega$$

Luminance L, en W.m⁻².sr

Flux radiatif F, en W.m⁻²

Forçages radiatifs

DIFFUSION

$$\mu \frac{dL}{d\tau}(\tau,\mu,\phi) = L(\tau,\mu,\phi) - \frac{\varpi_o}{4\pi} \int_0^{2\pi} d\phi' \int_{-1}^1 d\mu' p(\mu',\phi',\mu,\phi) L(\tau,\mu',\phi')$$

$$- \left[1 - \varpi_o\right] B^{BB}(T) - \frac{\varpi_o}{4\pi} p(\mu_0,\phi_0,\mu,\phi) C^s e^{\left(-\tau/\mu_0\right)}.$$

$$Expaisseur optique Fonction de diffusion Albédo de diffusion simple$$

13 Février

Plan

I. Généralités dur le transfert Radiatif

Diffusion par les particules

Absorption gazeuse

II. Codes 1D

III. Transfert radiatif 3D

Trattoria 2015:

Transfert Radiatif dans les ATmospheres Terrestres pour les ObseRvations spatIAles.

Atelier organisé par le CNES et le LOA / Université de Lille 1

Ressources disponibles sur le site du LOA:

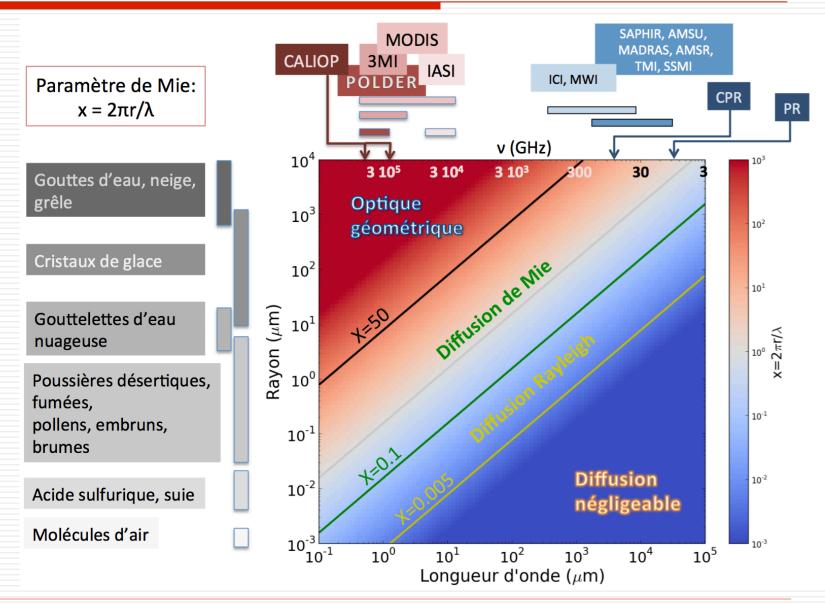
http://www-loa.univ-lille1.fr/workshops/Trattoria-2015/

Et du CNES:

http://cct.cnes.fr/content/vidéos-de-latelier-trattoria-2-0

Paramètres importants

Description des nuages:


- Phase thermodynamique
- Microphysique des nuages: distribution en taille, forme, etc.
- Extension géométrique: Pression de sommet des nuages, épaisseur, opacité, hétérogénéité verticale et horizontale.

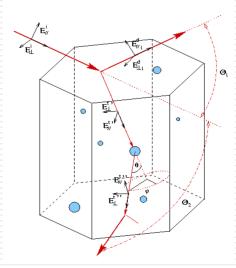
Propriétés à traduire en propriétés optiques pour le transfert radiatif:

- Fonction de diffusion
- Albédo de diffusion simple / facteur d'asymétrie
- Épaisseur optique d'extinction (absorption et diffusion)

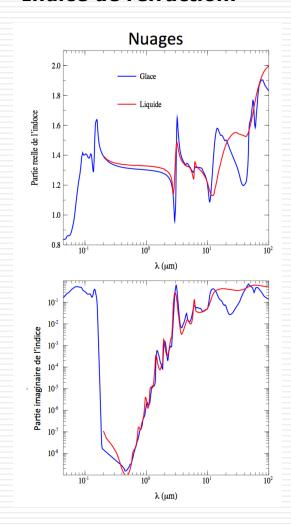
À toutes les longueurs d'onde.

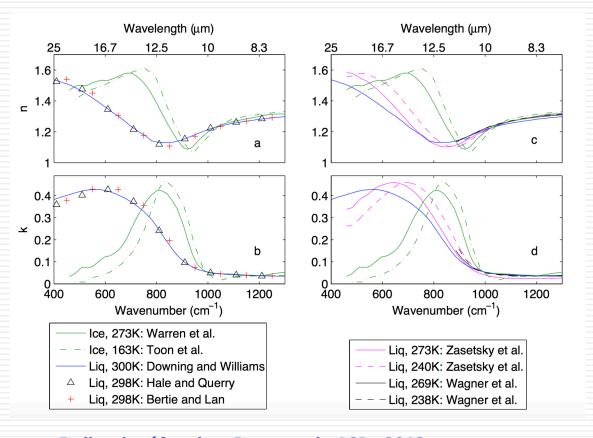
Diffusion

Diffusion


Diffusion Rayleigh: formulation approchée.

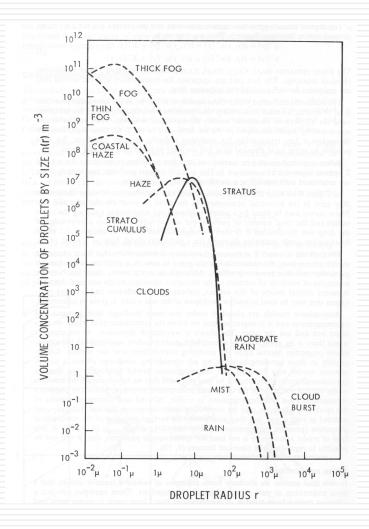
Diffusion de Mie: Méthode exacte pour résoudre les équations de Maxwell pour des particules sphériques – Temps de calcul prohibitif pour x > 100.


Diffusion géométrique (ou optique géométrique): x > 50 méthodes approchées fondées sur les lois de l'optique géométrique (Fresnel, Snell-Descartes). Forme quelconque. Temps de calcul importants.

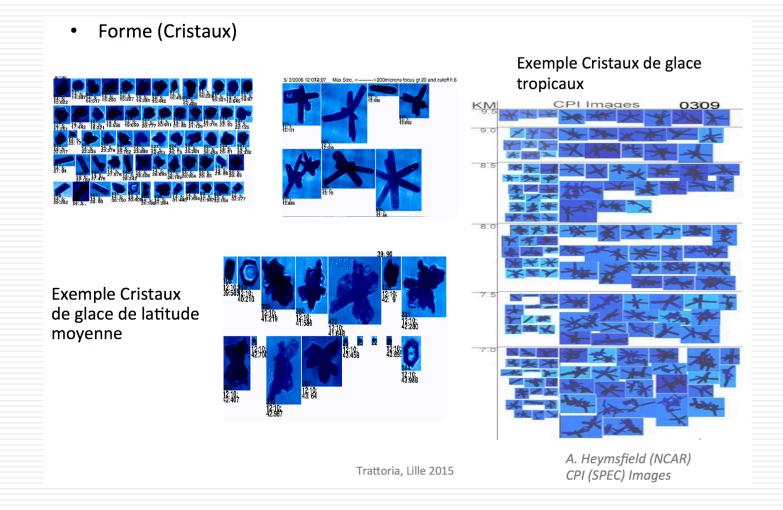

Nécessite de connaître l'indice de réfraction complexe et la distribution en taille.

→ Calcul des propriétés optiques: en général, utilisation de **LUTs et database.**

Indice de réfraction:

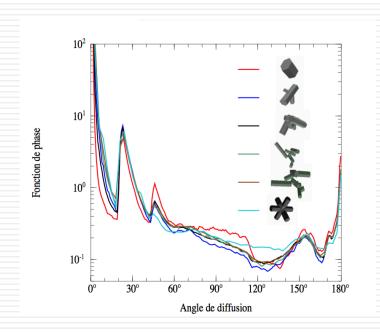

Indice de réfraction: Rowe et al., ACP, 2013 À gauche: données antérieures à 2005; T > 273 K, À droite: données plus récentes pour l'eau surfondue : T < 273 K

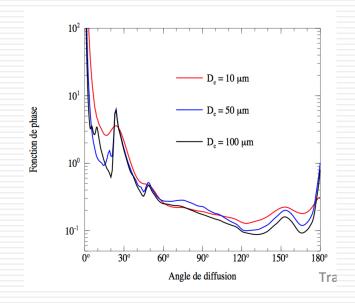
Distribution en taille:


Paramètres importants: rayon effectif et variance effective.

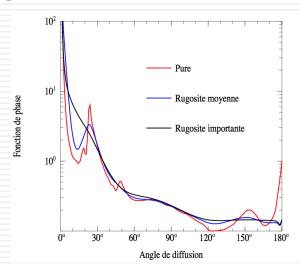
Exemple pour MODIS: gamma modifiée, avec le rayon effectif r_e et la variance σ [Hansen and Travis, 1974, Heymsfield et al., 2002, 2004].

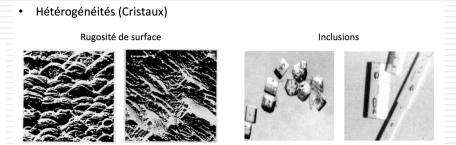
$$n(r,r_e) = N_0 r^{(1-3\sigma)/\sigma} e^{(r/r_e\sigma)}$$




Pour l'optique géométrique: forme des cristaux

Prise en compte de la forme et de la taille des cristaux:

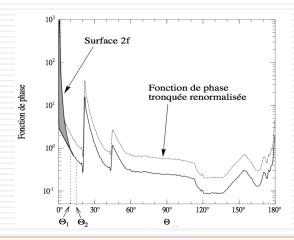

Méthodes:


DDA (discrete dipole approximation) pour les petits cristaux (Purcell and Pennypacker, 1973)

IGOM (improved geometric optics method) pour les plus gros cristaux (Yang and Liou, 1997)

Introduction d'une distribution en taille couplée à une distribution en forme Baum et al. (2014)
Baran and Labonnote (2007)

Rugosité:



Ice Cloud Research Team: Bryan A. Baum (UW-Madison), Ping Yang and colleagues (Texas A&M), Andrew J. Heymsfield, Carl Schmitt, and Aaron Bansemer (NCAR)

https://www.ssec.wisc.edu/ice_models/

Troncature de la fonction de phase:

Décomposition de la matrice de phase en fonctions sphériques généralisées. Nombre de termes de la décomposition augmente avec la taille **> temps de calcul prohibitif**

Méthodes de troncature pour réduire le nombre de termes du développement (Potter, Delta-M et Delta-fit).

Bonne précision, accélération des temps de calcul

Diffusion multiple

Base de données multi-sources

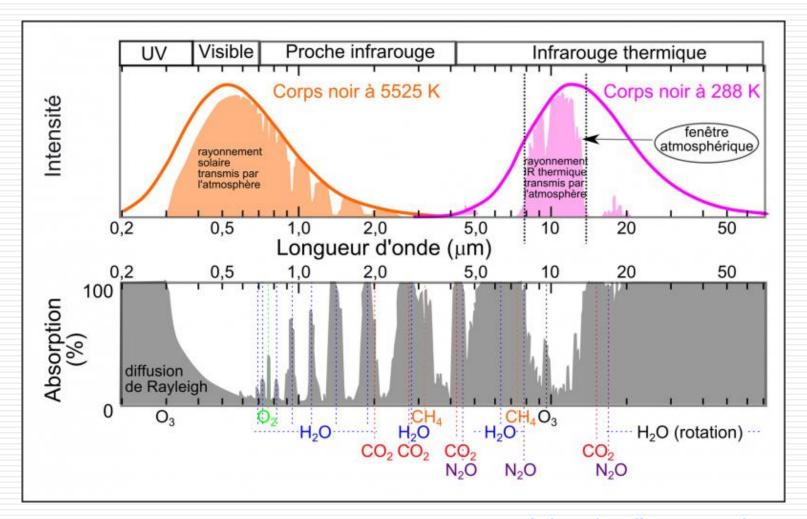
Code	Туре	Limitation
GEISA	Indices de réfraction de plusieurs types d'aérosols et propriétés optiques et microphysiques des aérosols et nuages. Mise à jour en 2014. Hébergé par le Pôle Atmosphère.	Jacquinet-Husson et al., 2011 https://www.aeris-data.fr/geisa/
HITRAN	Indices de réfraction de plusieurs types d'aérosols et propriétés optiques et microphysiques des aérosols.	www.cfa.harvard.edu/hitran
GADS/OPAC	Indices de réfraction de plusieurs types d'aérosols, distribution en taille de particules (aérosols et nuages) et propriétés optiques calculés par des codes de Mie et récemment T-Matrix. Intégrée dans GEISA.	Hess et al., 1998 http://cds-espri.ipsl.fr/etherTypo/? id=989
ADIENT	Indices de réfraction des d'aérosols et autres mesures issues 4 campagnes aéroportées	www.met.reading.ac.uk/adient/ ADIENT.html
CHARMEX, AMMA, FENNEC	Exemples de campagnes de terrain de grande envergure, où nombreuses mesures des particules ont été effectuées	charmex.lsce.ipsl.fr amma-international.org fennec.ouce.ox.ac.uk
LaMP	Mesures de propriétés microphysiques et optiques des aérosols et des nuages	wwwobs.univ-bpclermont.fr/atmos/
LOA	Mesures de propriétés microphysiques et optiques des aérosols et des nuages	http://www-loa.univ-lille1.fr/

Diffusion multiple

Méthodes de résolution de l'ETR en diffusion multiple disponibles:

Code	Туре	Limitation	Spectral
Two-Streams	Oper.	Flux montants et descendants	SW / LW
Adding-Doubling	Rech. / Oper.	PP Polarisation	SW / LW
OS	Rech. / Oper.	PP Polarisation aérosols	SW
DISORT	Rech. / Oper.	PP	SW / LW
VLIDORT	Rech. / Oper.	Pseudo - sphérique Polarisation	SW / LW
Monte Carlo	Rech.	3D Polarisation	SW / LW

★ Plus d'information, voir Trattoria 2015:


Conférence de Laurent Labonnote.

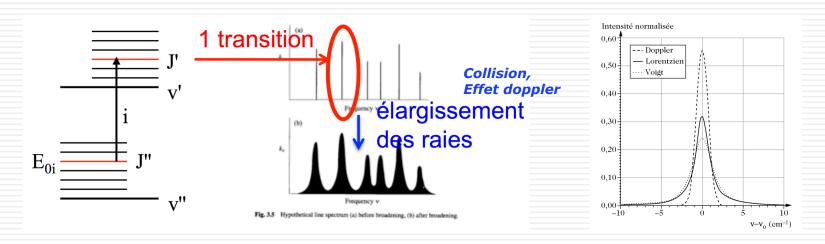
Diffusion

Recommandations TRATTORIA:

- Disposer de bases de données pour les propriétés optiques des particules (nuages et aérosols).
- Disposer d'indices de réfraction complexes de bonne qualité pour les particules (en particulier pour les aérosols).
- Développer des méthodes synergétiques exploitant la complémentarité des instruments de mesures pour restituer de nouvelles propriétés des particules.
- Disposer de codes inverses rapides prenant en compte l'ensemble des paramètres.

Absorption gazeuse

C. Clerbaux / Le climat en questions


Spectroscopie des gaz

Epaisseur optique d'absorption τ_a fonction du coefficient d'absorption K_{ν} :

 $K_v = S * f(v)$ avec S l'intensité et f(v) la forme de la raie (pour chaque transition)

$$K_{v} = S \times f(v)$$
intensité intégrée forme de raie
$$S = \int_{0}^{+\infty} K_{v} dv \qquad \int_{0}^{+\infty} f(v) dv = 1$$

22

Nombreuses avancées ces dernières années: nombre de transitions et de molécules, forme des raies, prise en compte des line-mixing, etc.

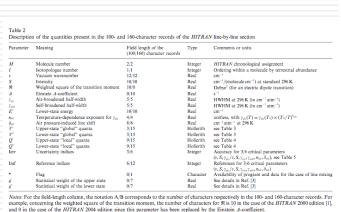
★ Plus d'information, voir Trattoria 2015:

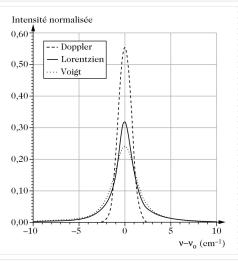
Conférence de Cyril Crevoisier

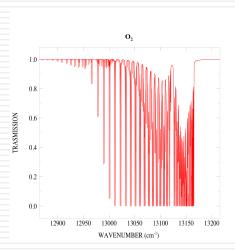
Absorption du rayonnement par les gaz

Bases de données spectroscopiques: GEISA (LMD) ou HITRAN (USA)

Raies spectrales sur l'ensemble du spectre


1975: 100 000 raies spectrales dans HITRAN


2015: Plus de cinq millions de raies spectrales pour GEISA


52 molécules d'intérêt atmosphérique (H₂O, CO₂, O₃, CH₄, O₂ ...)

Complétées par des continua d'absorption (paramétrisations) pour H₂O, O₃, N₂, CFC ...

Haute résolution spectrale ($\Delta v \approx 0.0001 \text{ cm}^{-1}$; $\Delta \lambda \approx 1 \cdot 10^{-6} \mu\text{m}$): code raie-par-raie (LBL).

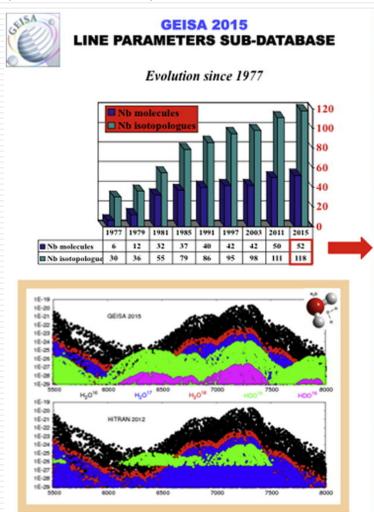
Bases spectroscopiques

→

Raies d'absorption

→

Spectres d'absorption (LBL)

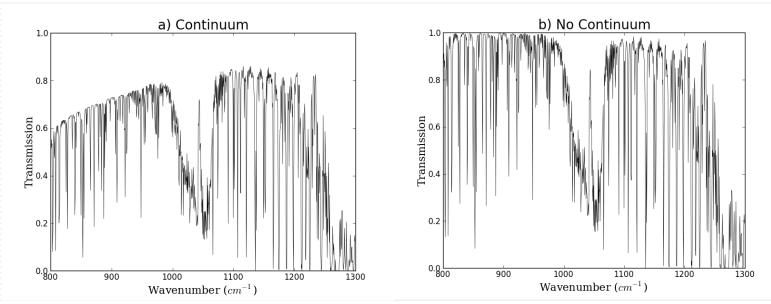

Bases de données spectroscopiques

HITRAN (2016): high-resolution transmission molecular absorption database / Harvard-Smithsonian Center for Astrophysics, MA, USA – Gordon et al., JQSRT, 2016

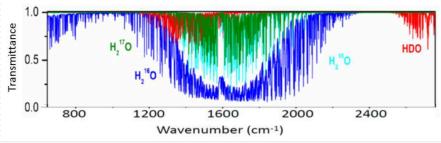
Parameters from the HITRA	N2004 format in HITRANonline		
Parameter	Units	Identifier ^a	Description
Molecule ID	_	molec_id	HITRAN integer identifying the molecule
Isotopologue ID	_	local_iso_id	HITRAN integer identifying the isotopologue of a particular molecule
ν	cm ⁻¹	nu	Transition wavenumber
S	cm ⁻¹ /(molecule cm ⁻²)	sw	Transition intensity, weighted by isotopologue abundance
Α	s^{-1}	a	Einstein A-coefficient
Yair	cm^{-1} atm $^{-1}$	gamma_air	Air-broadened Lorentzian half width at half maximum (HWHM) coeffi cient (for Voigt lineshape)
Yself	cm^{-1} atm $^{-1}$	gamma_self	Self-broadened Lorentzian HWHM coefficient (for Voigt lineshape)
E"	cm ⁻¹	elower	Lower-state energy
n_{air}	_	n_air	Temperature-dependence exponent for γ_{air}
δ_{air}	cm^{-1} atm $^{-1}$	delta_air	Air pressure-induced line shift
$V^{\prime b}$	_	global_upper_quanta	Upper-state "global" quanta in HITRAN2004 format
V" ^b	_	global_lower_quanta	Lower-state "global" quanta in HITRAN2004 format
Q' ^b	_	local_upper_quanta	Upper-state "local" quanta in HITRAN2004 format
Q" ^b	_	local_lower_quanta	Lower-state "local" quanta in HITRAN2004 format
Ierr ^b		ierr	Ordered list of indices corresponding to uncertainty estimates of trans tion parameters
Iref ^b		iref	Ordered list of reference identifiers for transition parameters
g'	_	gp	Upper-state statistical weight
g"	_	gpp	Lower-state statistical weight
Metadata and other special	parameters		-
Transition ID	_	trans_id	Unique integer identifying the transition
Global Isotopologue ID	-	global_iso_id	Global integer ID identifying the isotopologue (unique across the who database)
qns'	_	statep	Upper-state quantum numbers in HITRANonline format
gns"	_	statepp	Lower-state quantum numbers in HITRANonline format
par line	_	par_line	Complete representation of the line in the HITRAN2004 160-character
		•	format
	ny new perturbing species, X ^c , an cm ⁻¹ atm ⁻¹		
γх	cm ⁻¹ atm ⁻¹	gamma_X	Lorentzian HWHM coefficient (for Voigt lineshape) for broadening by perturber X
n_X	-	n_X	Temperature-dependence exponent for γ_X
n _{self}		n_self	Temperature-dependence exponent for γ_{self}
δ_{self}	cm ⁻¹ atm ⁻¹	delta_self	Self-induced pressure line shift
δ'_{air}	cm ⁻¹ atm ⁻¹ K ⁻¹	deltap_air	Linear temperature dependence coefficient for δ_{air}
δ'_{self}	cm ⁻¹ atm ⁻¹ K ⁻¹	deltap_self	Linear temperature dependence coefficient for δ_{self}
δ'_{H_2}	${\rm cm^{-1}\ atm^{-1}\ K^{-1}}$	deltap_H2	Linear temperature dependence coefficient for δ_{H_2}
δ_X	cm^{-1} atm $^{-1}$	delta_X	Pressure-induced line shift due to perturber X
Y _{air}	cm ⁻¹ atm ⁻¹	y_air	First-order (Rosenkranz) line coupling coefficient within Voigt profile; air-broadened environment
Y_{self}	cm ⁻¹ atm ⁻¹	y_self	First-order (Rosenkranz) line coupling coefficient within Voigt profile air-broadened environment

Bases de données spectroscopiques

GEISA (2015): Gestion et Etude des Informations Spectroscopiques Atmosphériques / LMD Ecole Polytechnique, France – Jacquinet-Husson et al., Journal of Molecular Spectroscopy.



Molecular Species	ID	Contributors		
H ₂ O	1	I Coudert, J. Tennyson, A. Campargue, S. Mikhailenko, O.V. Naumenko, J. Orphal, A. Ruth, R.R. Gamache		
CO2	2	V.I. Perevalov, S. Tashkun, R.R. Gamache		
0,	3	A. Barbe, S. Mikhailenko, Vl.G. Tyuterev		
СН₄	6	V. Boudon, L.R. Brown, A.Campargue, D.C. Benner		
0,	7	S. Yu, B. Drouin		
SO ₂	9	D. Jacquemart, H.S.P. Müller		
NH ₃	11	M. Down, J. Tennyson, L.R. Brown		
HNO,	13	A. Perrin		
H ₂ CO	21	D. Jacquemart, H.S.P. Müller		
C₂H ₆	22	L.R. Brown, K.Y. Sung		
CH ₃ D	23	L.R. Brown, A. Campargue.		
C2H2	24	D. Jacquemart		
C₂H₄	25	JM. Flaud		
HCN	27	J. Tennyson		
C2N2	29	A. Jolly, A. Fayt		
C ₄ H ₂	30	A. Jolly, A. Fayt		
CH ₃ Cl	34	D. Jacquemart, A. Nikitin, J. Buldyreva, N. Lavrentieva		
H ₂ S	36	O.V. Naumenko, L.R. Brown		
CH ₃ Br	43	D. Jacquemart.		
HNC	46	J. Tennyson		
HDO (NEW)	51	A. Campargue, S. Mikhailenko, O.V. Naumenko, R.R. Gamache		
SO ₃ (NEW)	52	J. Tennyson, D.S. Underwood		

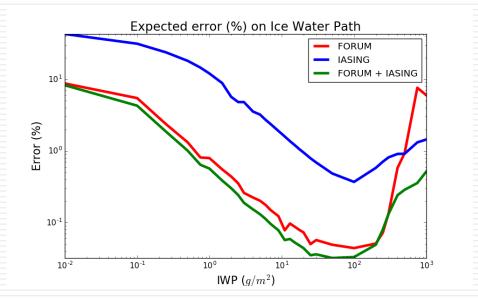

Codes « line-by-line »

Absorption gazeuse à haute résolution spectrale: de 10⁻⁴ à 10⁻² cm⁻¹ (environ 10⁻⁶ µm)

Codes LBL: très précis mais lents

Prise en compte du continuum de vapeur d'eau

Prise en compte des isopotologues


Codes « line-by-line »

Apport de l'infrarouge lointain pour l'étude des nuages:

Intérêt de l'IR à haute résolution spectrale: IASI entre 645 et 2760 cm⁻¹ (3.6 à 15 μm)

FORUM (Far Outgoing Radiation Understanding and Monitoring): de 100 et 1600 cm⁻¹

Simulations LBL + VLIDORT: meilleure restitution de IWP en prenant en compte: l'erreur de mesure des instruments, mauvaise connaissance de l'émissivité et de la température de surface, du profil de température, du profil du contenu en vapeur d'eau, O_3 , CH_4 et CO_2 , ainsi qu'une mauvaise représentation du profil de glace dans le nuage.

Impact sur l'IWP (L. Labonnote - LOA)

Méthodes approchées - plus rapides

1. Modèles de bandes:

Transmission moyenne pour un intervalle spectral donné Δv :

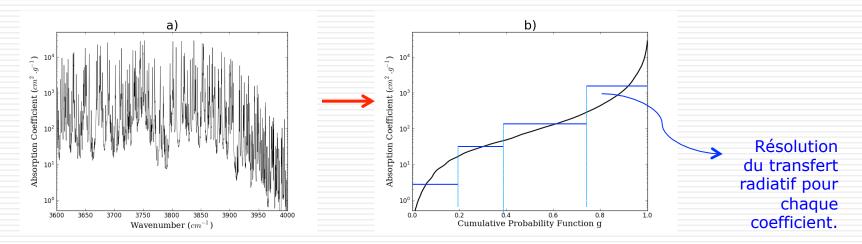
$$T_{\Delta v} = \prod_{i=1}^{N} \frac{1}{\Delta v} \int_{\Delta v}^{\infty} \int_{0}^{\infty} p(S_i) \exp\left[-aS_i g(v - v_i)\right] dS_i dv_i$$

La position spectrale des raies n'a pas d'importance.

Goody
$$T_{\Delta v} = \exp \left[-a \frac{\overline{S}}{\delta} \left(1 + \frac{a \overline{S}}{\pi \overline{\alpha}} \right)^{-1/2} \right]$$
ou
$$\overline{S} = \frac{1}{N} \sum_{i=1}^{N} S_i \quad ; \quad \overline{\alpha} = \frac{4}{\pi \overline{S}} \left[\frac{1}{N} \sum_{i=1}^{N} \left(S_i \alpha_i \right)^{1/2} \right]^2$$
Malkmus
$$T_{\Delta v}^{M} = \exp \left[-\frac{2\pi \overline{\alpha}}{\delta} \left[\left(1 + \frac{a \overline{S}}{\pi \overline{\alpha}} \right)^{1/2} - 1 \right] \right]$$

Approche simple, mais moins précise. Difficultés:

- · cas des milieux inhomogènes,
- prise en compte de la diffusion multiple.


Méthodes approchées

2. Méthode de la k-distribution: actuellement très utilisée en transfert radiatif atmosphérique.

$$T_{\Delta v}(P,T) = \frac{1}{\Delta v} \int_{0}^{\infty} f(k) \exp[-k(P,T)u(P,T)] dk$$

Pour chaque intervalle Δv : Fonction de répartition g

$$g(k_l) = \int_{0}^{k_l} f(k) dk$$

$$T_{\Delta v}(P,T) \approx \sum_{i=1}^{N} \Delta g_i \exp\left[-k_i(P,T)u(P,T)\right] \approx \sum_{i=1}^{N} a_i \exp\left[-k_i(P,T)u(P,T)\right]$$

Méthodes approchées

Avantages:

- Simple, rapide et assez précise,
- prise en compte de la diffusion multiple,
- prise en compte de la réponse spectrale du capteur,
- atmosphères inhomogènes (correlated k-distribution).

Inconvénients:

- Une grande précision nécessite d'utiliser la « non correlated k-distribution » avec un nombre élevé d'exponentielles ... proche d'un LBL ?
- Il faut recalculer les coefficients de la k-distribution pour chaque nouveau capteur.

Méthodes approchées

3. Méthode des prédicteurs:

L'épaisseur optique d'absorption dans un canal i du sommet de l'atmosphère à un niveau j est prédite par:

$$\tau_{abs,i,j} = \tau_{abs,i,j-1} + \sum_{k=1}^{K} a_{i,j,k} X_{i,k}$$

- a sont les coefficients et X les prédicteurs (K valeurs)
- Les prédicteurs sont des fonctions des variables atmosphériques (*P*, *T*, absorbant) et de la sécante (cosinus inverse de l'angle zénithale).
- Les coefficients sont pré-calculés à partir d'un jeu d'entraînement de profils atmosphériques représentant la variabilité naturelle de l'atmosphère.
- → Code RTTOV

Absorption du rayonnement par les gaz

Recommandations TRATTORIA:

Spectroscopie:

- Disposer d'incertitudes sur les paramètres des base de données spectroscopiques
- Améliorer la prise en compte des « line mixing » (modifications des formes de raies par interférence entre raies)
- Améliorer les paramètres des continua (en particulier H₂O) et sections efficaces et leur dépendances à P et T.

Codes « line-by-line »:

- Disposer de codes de référence prenant en compte tous les paramètres.
- Rendre ces codes disponibles à la communauté, avec une documentation.

Modèles de bandes:

- Développer des paramétrisations fiables et précises: accélération des calculs.
- Développement dans les autres domaines de la physique: par exemple dans le domaine de l'énergétique / thermique au CETHIL (l-distribution) ou au LAPLACE (Monte Carlo – collisions nulles)

Codes de transfert radiatif

Codes de transfert radiatif: programmes informatiques permettant la résolution numérique de l'équation du transfert radiatif.

Hiérarchie de codes, des codes très précis (mais très lents) à des codes plus approchés (donc plus rapides):

Codes de références

- Codes à haute résolution spectrale dits « raie-par-raie » pour l'absorption
 - Prise en compte des effets 3D (Monte Carlo) pour la diffusion

Codes approchés

- hypothèse plan parallèle 1D
- modèle de bande pour les gaz
- moyenne ou basse résolution spectrale

Codes ultra rapides

- réseaux de neurones
- Approches statistiques
- calculs massivement parallèles / cartes graphiques

Codes de transfert radiatif

Quelques codes disponibles (non exhaustif):

Code	Origine	Spectral	type	Application
LBLRTM	AER (USA)	UV → IRT	LBL	Télédétection
4A / 4AOP	LMD /Noveltis (France)	IRT / PIR	LBL	Télédétection
ARAHMIS	LOA (France)	UV → IRT	LBL	Télédétection / en développement
RRTM	AER (USA)	UV → IRT	k-distribution	Climat / Télédétection
MODTRAN	AFGL (USA)	UV → IRT	k-distribution	Climat / Télédétection
RTTOV	MetOffice / EUMETSAT	UV → IRT	prédicteurs	Télédétection
STREAMER	USA	UV → IRT	k-distribution	Climat / Télédétection
5S / 6S	LOA (France) / NASA	UV/PIR	Modèle de bandes	Télédétection
SHDOM	Evans(1998), Efremenko and Trautmann (2013), Pincus and Evans (2009)	UV → IRT	Code 3D	Télédétection Luminance et BT au TOA Lidar à HRS (en développement)
3DMCPOL	LOA (France), Cornet et al.,	UV → IRT	Code 3D	Télédétection Polarisation
MATISSE	ONERA	$UV \rightarrow IRT$	Scènes 3D	Télédétection
GRASP	GRASP/LOA	Vis/IR	Multi-propos	Télédétection
LIBRADTRAN	Bernhard Mayer et al.	UV → IRT	Ressources en	Transfert radiatif
ARTDECO	LOA	$UV \rightarrow IRT$	Ressources en	Transfert radiatif

ARTDECO

Atmospheric Radiative Transfer Database for Earth and Climate Observation

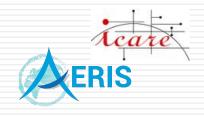
Base de codes et données pour le transfert radiatif:

Codes et données, de l'UV à l'infrarouge thermique.

Luminances (totale and polarisée) et flux.

Atmosphère 1D verticalement inhomogène.

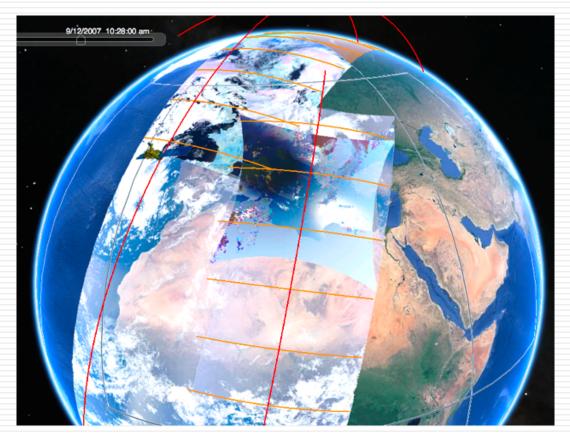
Absorption: k- distribution pour l'absorption gazeuse.


Propriétés des nuages et aérosols (code de Mie, database pour les cristaux).

ARTDECO est développé et maintenu par le Laboratoire d'Optique Atmosphérique (LOA), distribué par le centre AERIS/ICARE and financé par le CNRS / Université de Lille and CNES (programme TOSCA). **ARTDECO** est disponible à AERIS/ICARE data and services center:

URL: http://www.icare.univ-lille1.fr/projects/artdeco

Contact : contact@icare.univ-lille1.fr


Exemple d'application: Etude sur le brouillard (SIRTA), voir conférence et poster demain (session brouillard).

ARTDECO pour la télédétection: mission 3MI

Example of simulated radiances along the orbit of the future 3MI instrument

This study has been realized as a part of the EUMETSAT project EUM/CO/13/4600001231/TMa

ARTDECO: forçage radiatif des aérosols au-dessus des nuages

Exemple d'application: estimation du forçage radiatif des aérosols au-dessus des nuages à l'aide de ARTDECO.

Thèse de Lucia Deaconu - décembre 2017 (LOA).

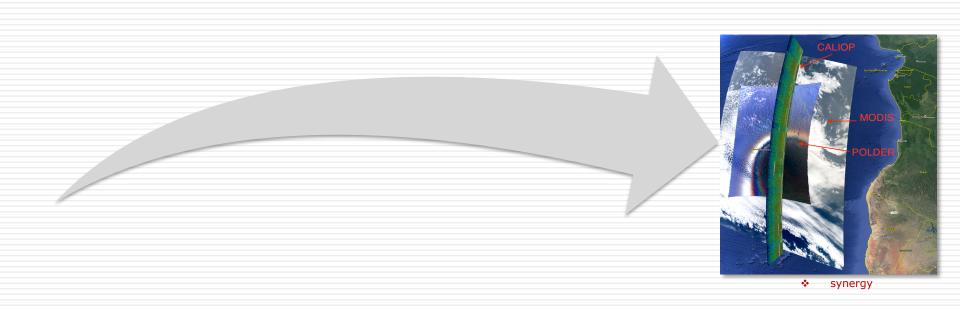
Estimation obtenues à partir des mesures de POLDER et CALIOP, en utilisant la chaine de traitement des aérosols et nuage du LOA.

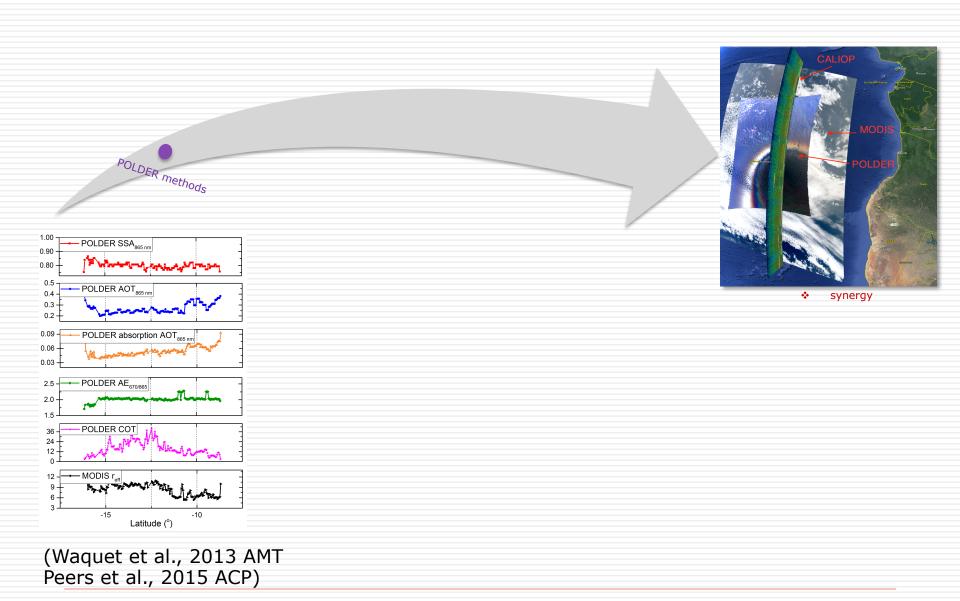
Waquet et al., Geophys. Res. Lett., 2013.

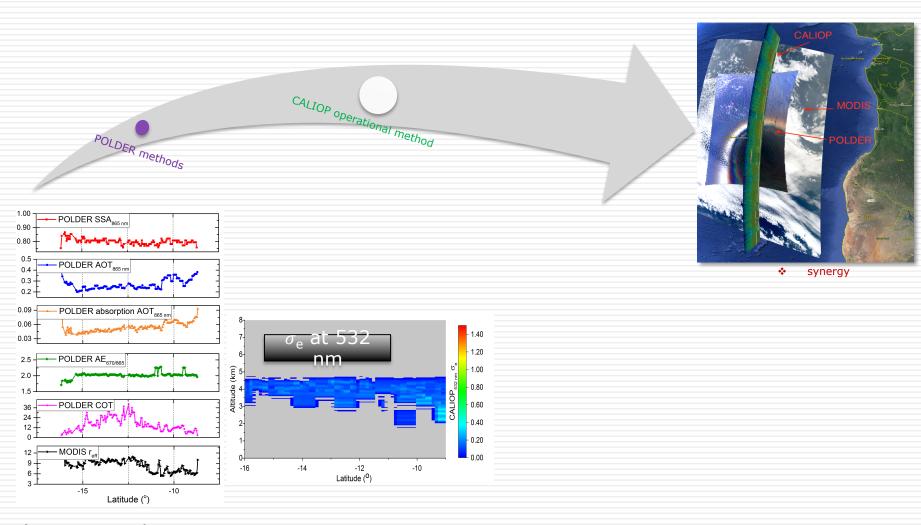
Peers et al., Geophys. Res. Lett., 2016.

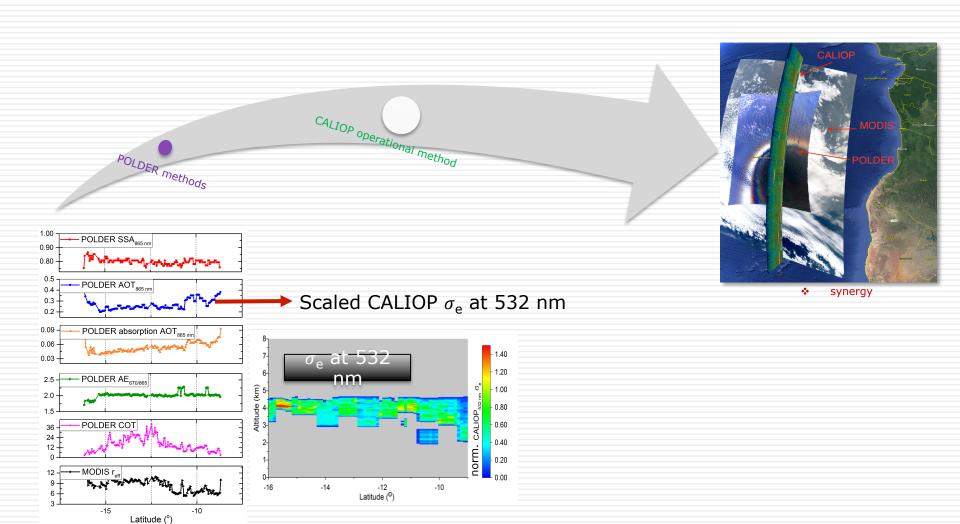
Deaconu L., et al., Atmos. Meas. Tech., 2017.

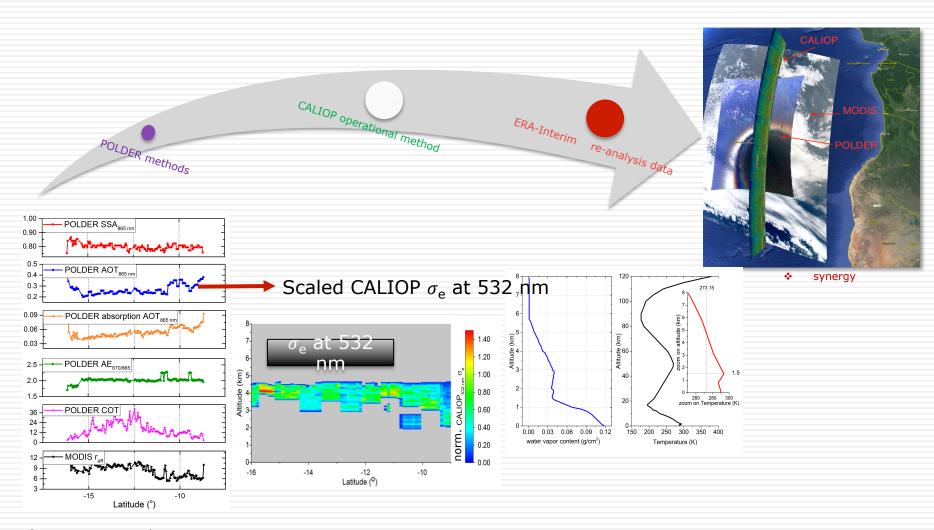
"The authors thank the Région Hauts-de-France, and the Ministère de l'Enseignement Supérieur et de la Recherche (CPER Climibio), and the European Fund for Regional Economic Development for their financial support."

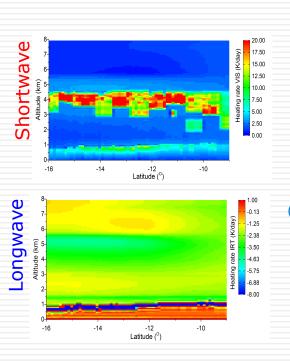











(Waquet et al., 2013 AMT Peers et al., 2015 ACP)

(Waquet et al., 2013 AMT Peers et al., 2015 ACP)

(Waquet et al., 2013 AMT Peers et al., 2015 ACP)

GAME Radiative Transfer code

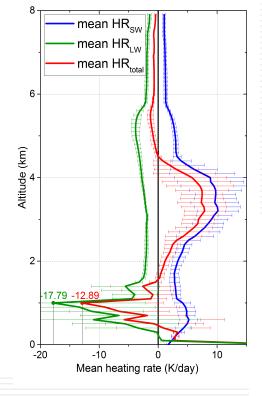
Heating Rates (100 m vertical resolution)

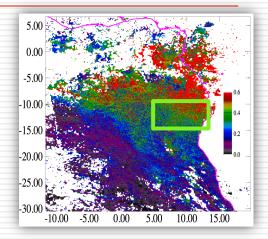
- > Shortwave
- Longwave
- > Total

Regional analysis over South Atlantic Ocean (June-August 2008)

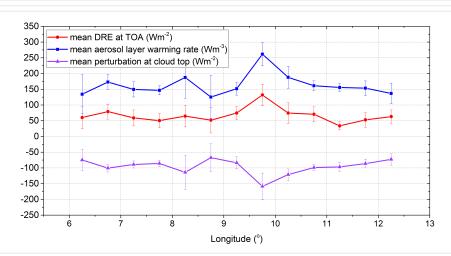
Mean heating rate profiles: SW, LW, total

Without aerosols:

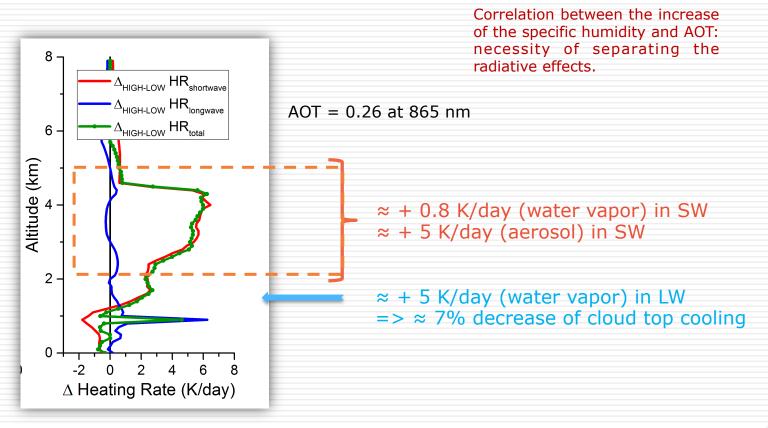

Altitude (km)


0 -20

mean HR_{sw} unpolluted mean HR_{Lw} mean HR_{total} unpolluted

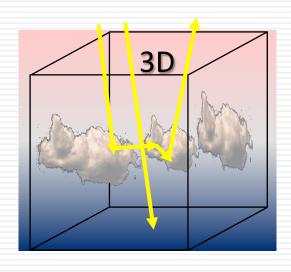

Mean heating rate (K/day)

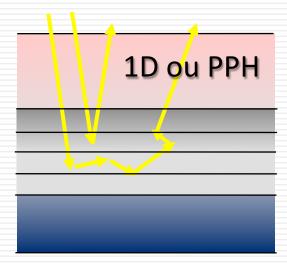
With aerosols:

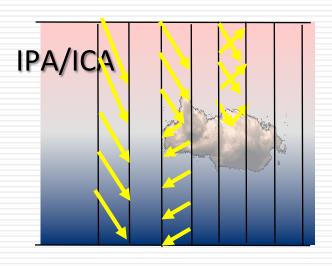


- DRE at TOA (in SW)
- Heat trapped in atmosphere
- Perturbation (△F↓ (with without aerosols) at the cloud top)

Heating rates SW + LW of smoke above cloud

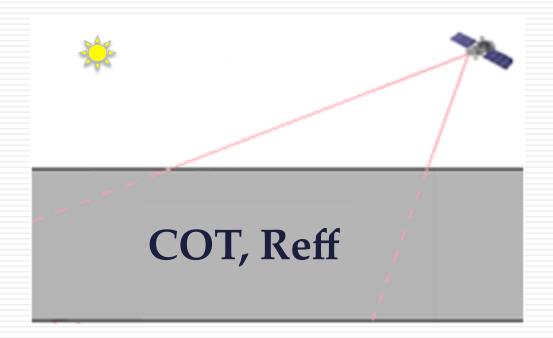



- The aerosols are 88 % responsible for warming the layer, modifying the atmospheric stability
- The water vapor leads to approximately **7**% (at 1 km) decrease in the cloud top cooling


Semi-direct effect may be a coupled effect of aerosols and water vapor

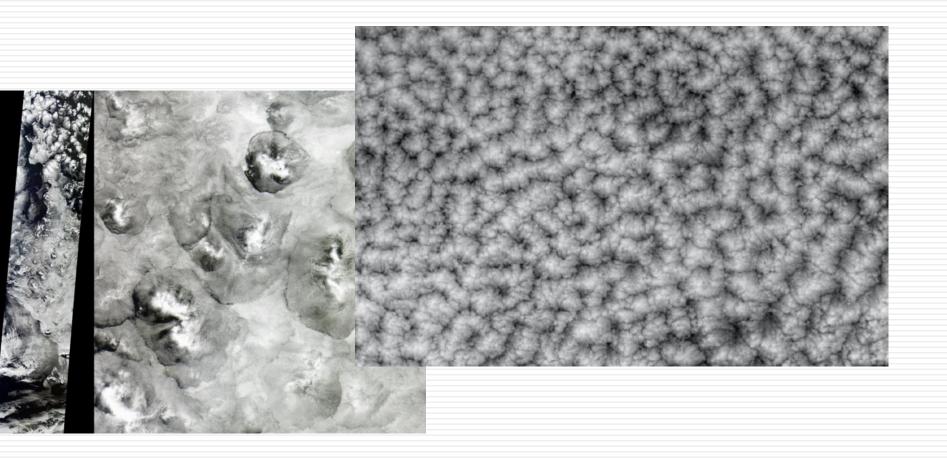
Codes de transfert radiatif 3D

Résolution de l'équation de transfert radiatif: plan parallèle, 1D ou 3D

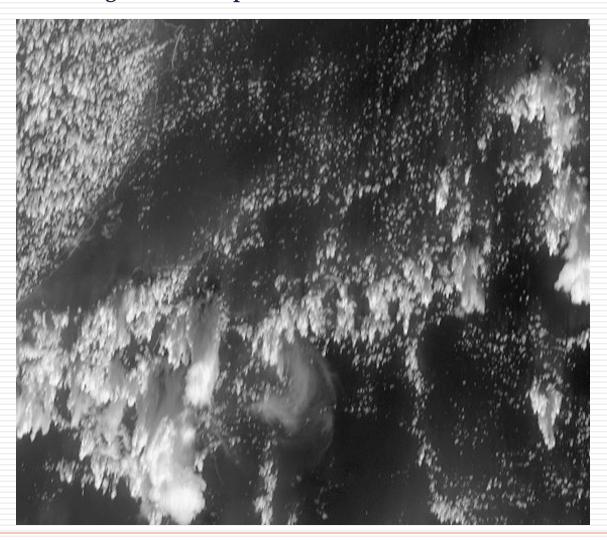

Nuage 3D
Transfert radiatif 3D

Nuage plan-parallèle homogène (PPH) TR1D

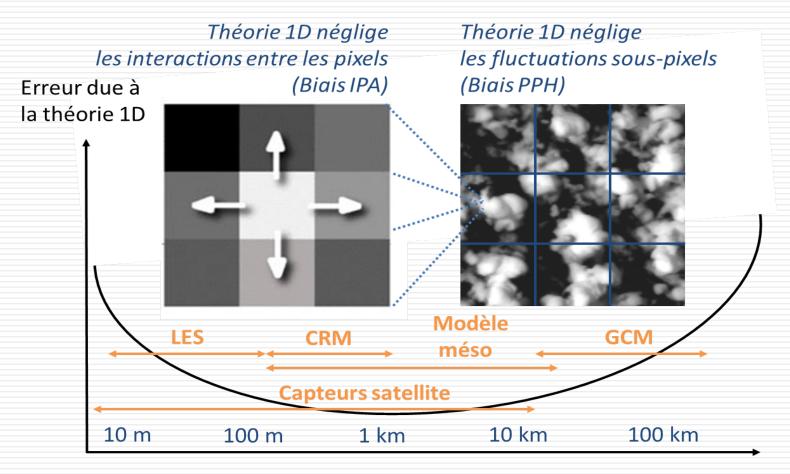
Méthode IPA/ICA (Cahalan et al., 1994) (Independent Pixel/Column Approximation) Nuage homogène TR1D


Modèle du nuage homogène

Restitution des paramètres nuageux : modèle de nuage homogène, plan-parallèle et infini

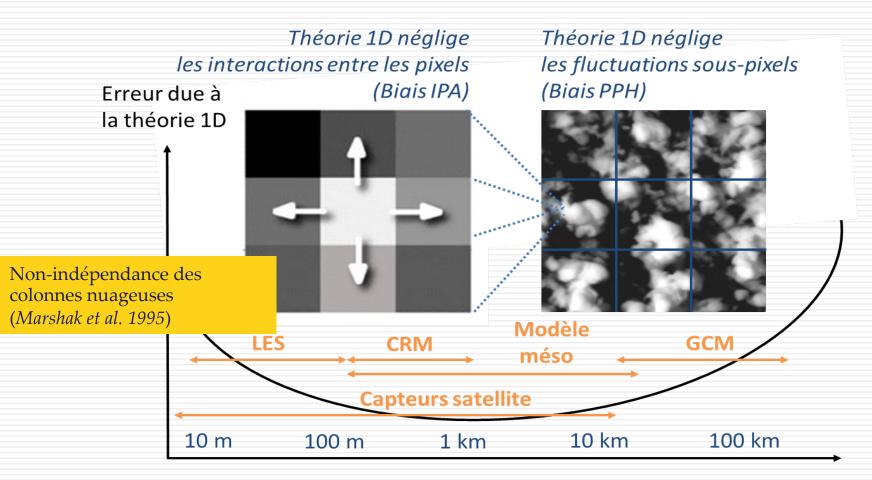

Modèle du nuage homogène

Restitution des paramètres nuageux : modèle de nuage homogène, plan-parallèle et infini

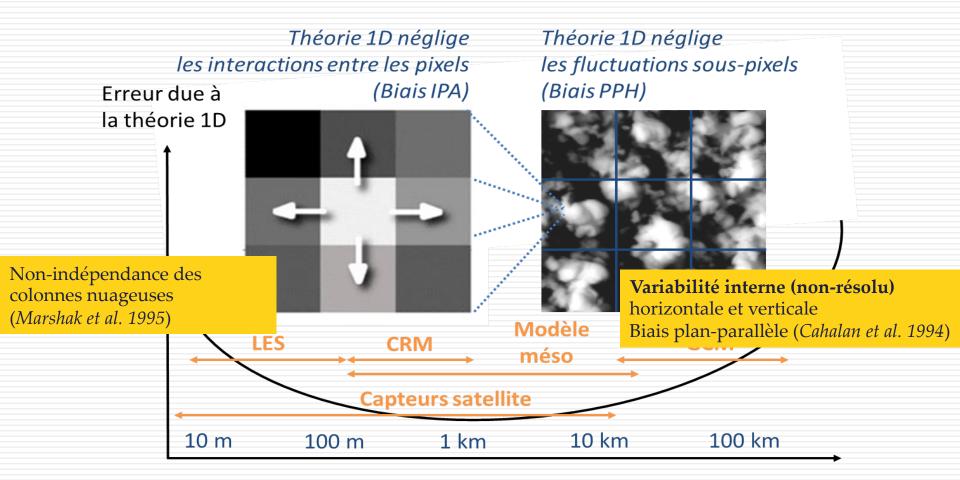


Modèle du nuage homogène

Restitution des paramètres nuageux : modèle de nuage homogène, plan-parallèle et infini Nuages observés par MISR (275m de résolution):



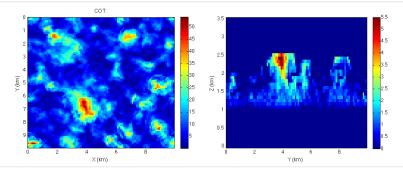
Codes de transfert radiatif 3D


Taille de la maille ou du pixel

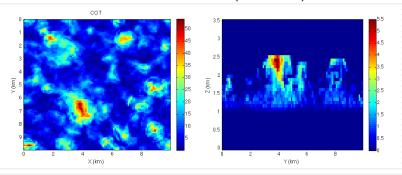
Codes de transfert radiatif

Taille de la maille ou du pixel

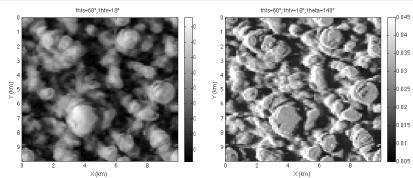
Codes de transfert radiatif


Taille de la maille ou du pixel

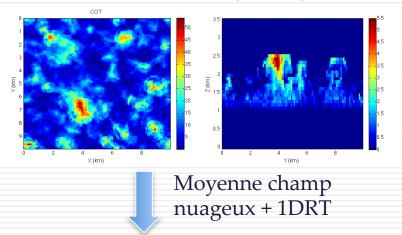
Codes de transfert radiatif


- + Variabilité externe (résolu) au pixel d'observation
- Effets liés aux bords des nuages (Varnai et Marshak, 2007; Horvath, Seethala et Deneke, 2014)
- Effets de surbrillance et d'ombrage (Loeb et Davies, 1996, 1997, 1998; Varnai et Davies, 1999)

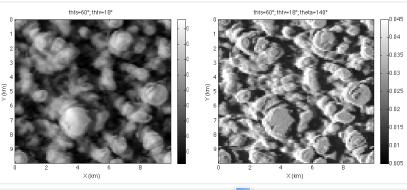
Génération d'un champ nuageux (100m) 3DCLOUD - *Szczap et al.*, **2014** or LES model (RAMS)



3D RT


Génération d'un champ nuageux (100m) 3DCLOUD - *Szczap et al.*, 2014 or LES model (RAMS)

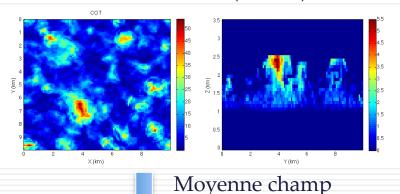
Simulation des luminances 3DMPCOL - *Cornet et al.*, 2010



Génération d'un champ nuageux (100m) 3DCLOUD - *Szczap et al., 2014* or LES model (RAMS)

3D RT

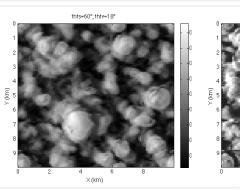
Simulation des luminances 3DMPCOL - *Cornet et al.*, 2010

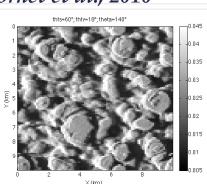


Moyenne le champ de luminances

R1D: Luminance 1D à la résolution de l'instrument (6x7km ou 1x1km)

1) Comparaisons des luminances 3D et 1D **R3D:** Luminance 1D à la résolution de l'instrument (6x7km ou 1x1km)


Génération d'un champ nuageux (100m) 3DCLOUD - *Szczap et al., 2014* or LES model (RAMS)



nuageux + 1DRT

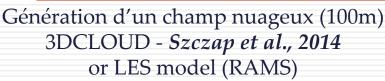
3D RT

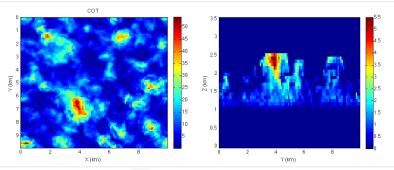
Simulation des luminances 3DMPCOL - *Cornet et al.*, 2010

Moyenne le champ de luminances

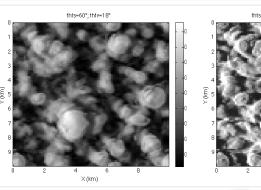
R1D : Luminance 1D à la résolution de l'instrument (6x7km ou 1x1km)

1) Comparaisons des luminances 3D et 1D **R3D:** Luminance 1D à la résolution de l'instrument (6x7km ou 1x1km)

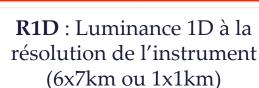

Applique l'algorithme opérationnel


Propriétés nuageuses 1D : COT, Reff, Veff, Albedo

2) Comparaisons des paramètres restitués



Propriétés nuageuses 3D: COT, Reff, Veff, Albedo



Moyenne champ nuageux + 1DRT Simulation des luminances 3DMPCOL - *Cornet et al.*, 2010

Moyenne le champ de luminances

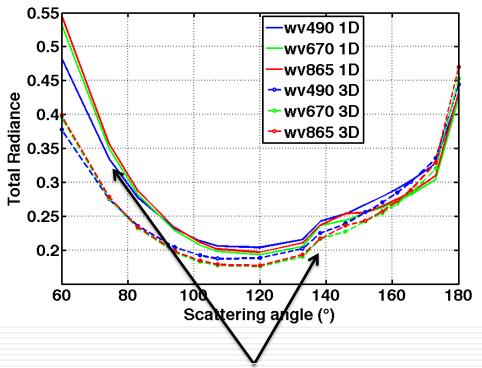
1) Comparaisons des luminances 3D et 1D

3D RT

R3D: Luminance 1D à la résolution de l'instrument (6x7km ou 1x1km)

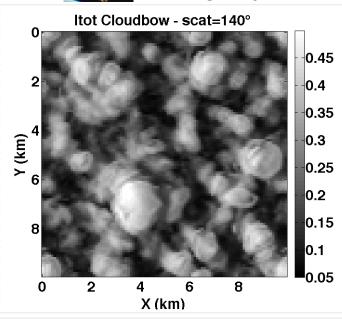
Applique l'algorithme opérationnel

Propriétés nuageuses 1D : COT, Reff, Veff, Albedo

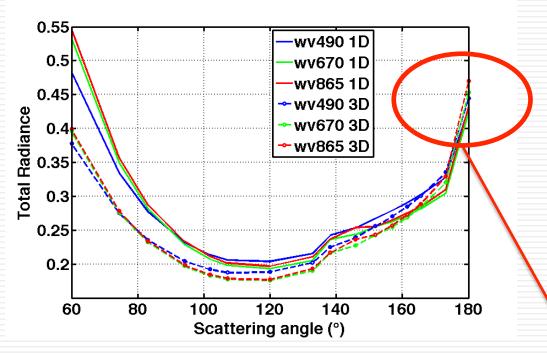

2) Comparaisons des paramètres restitués

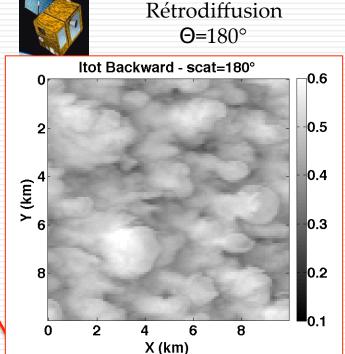
Propriétés nuageuses 3D: COT, Reff, Veff, Albedo

Effets sur les luminances totales


1D (plein) et 3D (pointillés) luminances en fonction de l'angle de diffusion. θ s=60°

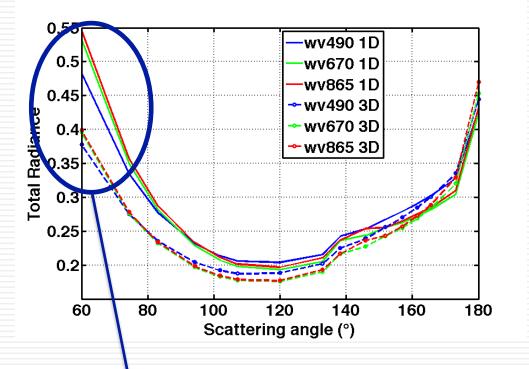
Généralement R3D < R1D, Biais plan-parallèle dû à l'hétérogénéité sous pixel




Vue dans l'arc en ciel Θ=140°

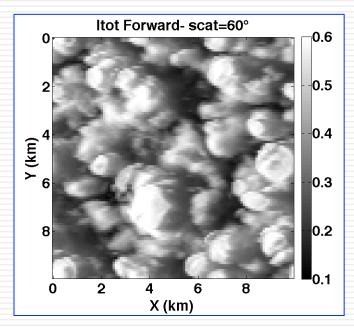
Effets sur les luminances totales

1D (plein) et 3D (pointillés) luminances en fonction de l'angle de diffusion. θ s=60°



R3D ≥ R1D, les cotés et/ou bosses nuageuses sont éclairés = surbrillance

Effets sur les luminances totales


1D (plein) et 3D (pointillés) luminances en fonction de l'angle de diffusion. θ s=60°

Vue avant Θ=60°

R3D << R1D, effets d'ombrage des cotés

Conclusion

Demande croissante en transfert radiatif:

Codes de calcul rapides et précis en télédétection et climat.

Codes de référence et groupes utilisateurs

Calcul des sensibilités / jacobiens

Disposer de ressources et documentation en transfert radiatif

Utilisation de plus en plus grande de la modélisation en transfert radiatif 3D:

Création d'un milieu de référence 3D.

Mise en place d'une plateforme web et d'un groupe utilisateur 3D.

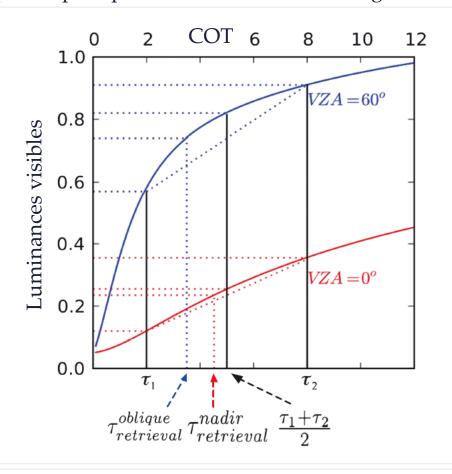
Nécessité d'accroitre la représentativité des zone de gradients de luminance en bords de nuages.

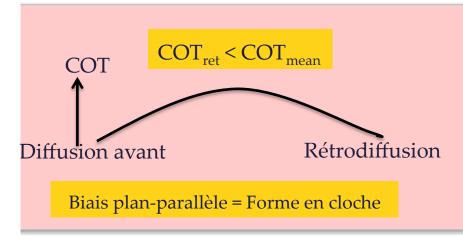
Veille technique et scientifique du TR 3D dans les autres domaines de la physique.

Modélisation 3D pour les GCM:

Plus rapide car calcul des flux.

Approche statistique pour représenter les nuages.

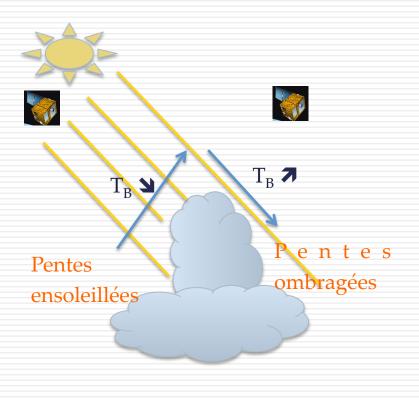

→ Conférence Richard Fournier « Rayonnement 3D SW et LW dans les nuages de couche limite : Monte Carlo et calcul de sensibilité ».

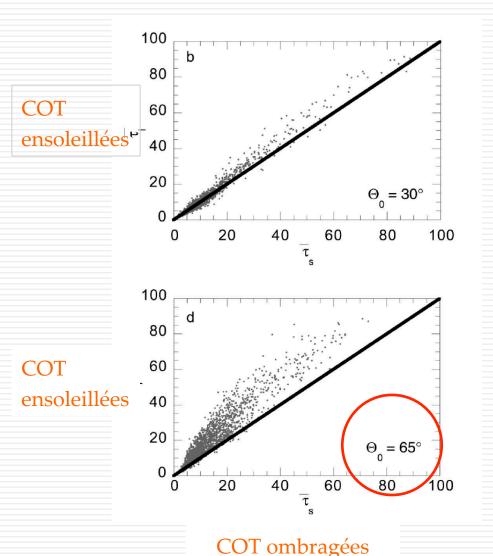

Conclusion

Merci de votre attention

Variation angulaire de COT

Biais plan-parallèle en fonction de l'angle d'observation: θv





Effets liés aux variabilités externes (3D)

Principe à partir de MODIS: Varnai et Marshak, 2002

Détection des pentes nuageuses ensoleillées ou <u>ombragées</u> grâce aux températures de brillance IR

